Managed Recharge and Base-Flow Enhancement in an Unconsolidated Aquifer in the Boulder River Valley, Montana

Luke Carlson – Montana Tech

in conjunction with:
Andy Bobst & Julie Butler
and
the Montana Bureau of Mines and Geology
Groundwater Investigation Program:
Boulder River Valley Groundwater Investigation

AWRA - 10/3/2013
Background

- **Boulder River Valley**
 - Appropriations exceed physical supply in most years\(^1\)
 - Boulder River runs dry in the late irrigation season – just when water is needed most
 - Several previous investigations to create a supplemental water supply (1967-1980)\(^2,3,4,5\)
Project Definition

• Purpose: Determine if the unconsolidated aquifer in the Boulder River Valley is suitable for a managed recharge project.

• Scope: Focus on the timing and magnitude of changes in flux between the aquifer and the Boulder River as a result of managed recharge.
Methods

• Field Data Collection
 – Surface water: hourly stage and bi-weekly flow monitoring
 – 23 well monitoring well network: generally monthly, hourly at 12 wells
 – Location and elevation surveyed by licensed surveyor

• Numerical Modeling
 – GMS by Aquaveo using USGS finite difference model MODFLOW
 – Model based on field parameters
 – Resulting model is a tool used to improved conceptual understanding and to make assessments or predictions under varying stress changes
Key Field Results

- Irrigation ditch/Groundwater relationship

- Boulder River/Groundwater relationship
Model Development
Modeling
Using the Tool

- Key Scenarios
 - Scenario 1: Terminate upper pediment irrigation ditch leakage
Scenario 7
- Maximum Murphy Ditch Capacity at central basin location (15 cfs)
 • Recharge applied March 15th thru May 9th
- Reduction of Boulder River losses
 • Average annual - 1.93 cfs
 • July – Sept. - 2.04 cfs
Using the Tool

Predicted surface water management impacts on aquifer water levels

- **Scenario 1**: No irrigation ditch leakage
- **Scenario 7**: Managed Recharge
- **20yr Baseline - Existing Conditions**
Findings

Managed Recharge is Viable

1. Possible uses of 1.93 cfs
 a) Agriculture ≈ irrigation of 930 acres
 b) Development ≈ 2,850 residences with lawns & gardens (11,400 people)
 c) Drinking water ≈ 620,000 people
 d) In-stream flow

2. Regulatory Concerns

3. Cost/Benefit Analysis
 • Purpose dependent

4. Looking Ahead
Acknowledgements

- Montana Bureau of Mines and Geology
 - Kirk Waren

- Graduate Committee
 - Butch Gerbrandt, Phd.
 - Andy Bobst, M.S.
 - Glenn Shaw, Phd.
 - Jack Skinner, Phd.

- Montana Tech General Engineering Department
- Land Owners in the Boulder River Valley
Questions?

Luke Carlson
Phone – 406-495-3438
Email – lcarlson@m-m.net

Project Webpage -
http://www.mmbmg.mtech.edu/gwip/project-boulder.asp
Selected References

